

Android Enterprise Security White Paper
Updated January, 2020

Android Enterprise Security White Paper (Updated January, 2020)

1

Table of Contents
Introduction

Android Operating System
Security by design

Hardware-backed Security
Verified Boot
Trusted Execution Environment
Android Keystore System

KeyStore key attestation
KeyChain
Jetpack Security
Key decryption on unlocked devices
Version Binding

Tamper-resistant hardware support
Biometrics
Fingerprint authentication
Face authentication
Additional authentication methods

Protected Confirmation

Operating System Security
Device integrity

Sandboxing
SELinux
Seccomp filter
Unix permissions

Anti-exploitation
User and Data Privacy
Restricting access to device identifiers
Location control
External storage access
Limited access to background sensors
Lockdown mode

Network security
DNS over TLS
TLS by default
Wi-Fi

Android Enterprise Security White Paper (Updated January, 2020)

2

VPN
VPN service modes
VPN Lockdown modes
Third-party apps

Certificate handling

Application security
Application signing
App permissions
Google Play Protect
Google Play app review
SafetyNet

Data protection
Encryption

File-Based Encryption
Full-Disk Encryption
Backup encryption

Android security updates
Google Play System Updates
Conscrypt

Device and profile management
Android Enterprise Device Use Cases
Integrating Android
OEMConfig
Device policies
Device owner mode provisioning
Separate work challenge
Cross profile data sharing

Application management
Enterprise Mobility Management apps
Managed Google Play
Private apps
Managed configurations
Applications from unknown sources

Programs
Android Enterprise Recommended
Android Security Rewards Program
Google Play Security Rewards

Android Enterprise Security White Paper (Updated January, 2020)

3

App Defense Alliance

Industry Standards and Certifications
SOC certification
Government Grade Security

FIPS 140-2 CAVP
NIAP Mobile Device Fundamentals Protection Profile
DISA Security Technical Implementation Guide (STIG)

Conclusion

Android Enterprise Security White Paper (Updated January, 2020)

4

Introduction
Android uses industry-leading security practices and works closely with the entire ecosystem
to help keep devices safe. Our robust, multi-layered approach to security is critical to
suppo�ing enterprises, which must contend with ongoing threats. Organizations require
strong security to protect their own data while also giving employees the �exibility to use
mobile devices for essential productivity tasks and preserve users’ privacy.

This security white paper outlines the Android approach to mobile security for business and
government customers, and details the strengths of the Android pla�orm, the range of
management APIs available to enforce control, and the role of Google Play Protect in detecting
threats.

Android o�ers a multi-layer security strategy with unique ways to keep data and devices safe.
Beyond hardware and operating system protections, Android uses multi-pro�le suppo� and
device-management options that enable the separation of work and personal data, keeping
company data secure. Google Play Protect o�ers built-in malware protection, identifying
Potentially Harmful Applications and continually working to keep data and devices safe.

This white paper also details how the open source Android pla�orm enables best-in-class
enterprise security by leveraging the collective intelligence of the Android ecosystem. This
information assists organizations in their decisions to implement Android and take advantage
of its robust security technology.

Android Operating System

Android is an open source so�ware stack created for a wide array of devices with di�erent
form factors. Android incorporates industry-leading security features and the Android team
works with developers and device OEMs to keep the Android pla�orm and ecosystem safe. A
robust security model is essential to enable a vigorous ecosystem of apps and devices built on
and around the Android pla�orm and suppo�ed by cloud services. As a result, through its
entire development lifecycle, Android has been subject to a rigorous security program.

The foundation of the Android platform is the Linux kernel. The Linux kernel has been in
widespread use for years, and is used in millions of security-sensitive environments.
Through its history of constantly being researched, attacked, and fixed by thousands of
developers, Linux has become a stable and secure kernel trusted by many corporations
and security professionals. Applications running on Android are signed and isolated into
application sandboxes associated with their application signature. The application sandbox
de�nes the privileges available to the application. Apps are generally built to execute in the
Android Runtime and interact with the operating system through a framework that describes

Android Enterprise Security White Paper (Updated January, 2020)

5

system services, pla�orm Application Programming Inte�aces (APIs), and message formats. A
variety of high-level and lower-level languages, such as Java, Kotlin, and C/C++, are allowed
and operate within the same application sandbox.

Figure 1. The Android so�ware stack

Security by design

Android uses hardware and so�ware protections to achieve strong defenses. Security sta�s at
the hardware level, where the user is authenticated with lock screen credentials. Veri�ed Boot
ensures the system so�ware has not been tampered with, and hardware-assisted encryption
and key handling help protect data in transit and at rest.

At the so�ware layer, built-in protection is essential to helping Android devices stay safe.
Google Play Protect is the world’s most widely-deployed threat detection service, actively
scanning over 50 billion apps on-devices every day to monitor for harmful behavior. Play
Protect scans all applications including public apps from Google Play, system apps updated by
OEMs and carriers, and sideloaded apps.

Application sandboxing isolates and guards Android apps, preventing malicious apps from
accessing private information. Android also protects access to internal operating system
components, to help prevent vulnerabilities from becoming exploitable. Mandatory, always-on
encryption helps keep data safe, even if devices fall into the wrong hands. Encryption is
protected with Keystore keys , which store cryptographic keys in a container, making it more
di�cult to extract from a device. Developers can leverage the Android KeyStore with Jetpack
Security safely and easily. Adiantum provides encryption capabilities for lower-powered

Android Enterprise Security White Paper (Updated January, 2020)

6

https://source.android.com/security/verifiedboot
https://www.android.com/play-protect/
https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/java/security/KeyStore.html
https://developer.android.com/jetpack/androidx/releases/security
https://developer.android.com/jetpack/androidx/releases/security
https://developer.android.com/jetpack/androidx/releases/security
https://source.android.com/security/encryption/adiantum

devices that do not have Advanced Encryption Standard (AES) instructions as pa� of the CPU,
potentially allowing businesses to use lower cost devices without fo�eiting cryptographic
security. In total, Android leverages hardware and so�ware to keep devices safe.

Hardware-backed Security
Android suppo�s several hardware features that enable strong device security.

Veri�ed Boot

Veri�ed Boot is Android's secure boot process that veri�es system so�ware before running it.
This makes it more di�cult for so�ware a�acks to persist across reboots, and provides users
with a safer state at boot time.

Each Veri�ed Boot stage is cryptographically signed. Each phase of the boot process veri�es
the integrity of the subsequent phase, prior to executing that code. As of Android 7.0, full boot
of a compatible device with a locked bootloader proceeds only if the OS satis�es integrity
checks.

The Veri�ed Boot state is used as an input in the process to derive disk encryption keys. If the
Veri�ed Boot state changes (e.g. the user unlocks the bootloader), then the secure hardware
prevents access to data used to derive the disk encryption keys that were used when the
bootloader was locked.

Veri�ed Boot on compatible devices running Android 9.0 and above require rollback
protection . This means that a kernel compromise (or physical a�ack) cannot put an older, more
vulnerable, version of the OS on a system and boot it. Additionally, rollback protection state is
stored in tamper-evident storage.

Enterprises can check the state of Veri�ed Boot using KeyStore key a�estation . This retrieves a
statement signed by the secure hardware a�esting to many a�ributes of Veri�ed Boot along
with other information about the state of the device. KeyStore key a�estation is required for
compatible devices shipped with Android 8.0 onwards.

Trusted Execution Environment

Android devices that suppo� a lock screen have a secondary, isolated environment called a
Trusted Execution Environment (TEE) . This enables fu�her separation from any untrusted code.
The capability is typically implemented using secure hardware such as ARM TrustZone ®
technology.

The TEE is responsible for some of the most security-critical operations on the device,

Android Enterprise Security White Paper (Updated January, 2020)

7

http://source.android.com/security/verifiedboot/index.html
https://source.android.com/security/verifiedboot/verified-boot#rollback-protection
https://source.android.com/security/verifiedboot/verified-boot#rollback-protection
https://developer.android.com/training/articles/security-key-attestation.html
https://source.android.com/security/trusty

including:
1. Lock screen passcode veri�cation : available on devices that suppo� a secure lock

screen and ship with Android 7.0 and above. Lock screen veri�cation is provided by TEE
unless an even more secure environment is available.

2. Fingerprint template matching : available on devices that have a �ngerprint sensor
and ship with Android Marshmallow 6.0 and above.

3. Protection and management of KeyStore keys : available on devices that suppo� a
secure lock screen that ship with Android 7.0 and above.

4. Protected Con�rmation: leverages a hardware-protected user inte�ace called
Trusted UI to facilitate high assurance to critical transactions, available on devices
running Android 9.0 and above.

5. Digital Rights Management (DRM): an extensible framework that lets apps manage
rights-protected content according to the license constraints associated with the
content.

Android Keystore System

The Android Keystore system is a foundation of data protection on devices. It stores
cryptographic keys in a container, making it more di�cult to extract them from the device.
Android KeyStore mitigates unauthorized use of key material on the Android device by making
apps specify authorized uses of their keys and then enforcing these restrictions outside of the
apps' processes.

Devices with Android 9.0 and above use the hardware-backed Keymaster 4 , which o�ers
additional protections against tampering. Keymaster introduced ID a�estation in Android 8.0
(Keymaster 3) and Key A�estation in Android 7.0 (Keymaster 2). Key a�estation enables
o�-device services to verify that keys used in apps are stored in a device’s hardware-backed
keystore. ID a�estation allows a device to provide proof of its hardware identi�ers, such as
serial number or IMEI.

Keystore suppo�s symmetric cryptographic primitives such as AES (Advanced Encryption
Standard) and HMAC (Keyed-Hash Message Authentication Code) and asymmetric
cryptographic algorithms. Access controls are speci�ed during key generation and enforced
for the lifetime of the key. Keys can be restricted to be usable only a�er the user has
authenticated, and only for speci�ed purposes or with speci�ed cryptographic parameters.

For devices that suppo� a secure lock screen and ship with Android 7.0 or above, KeyStore
must be implemented in secure hardware. This guarantees that even in the event of a kernel
compromise, KeyStore keys are not extractable from the secure hardware.

KeyStore key a�estation

Compatible devices that ship with Android 8.0 and higher suppo� Key A�estation , which

Android Enterprise Security White Paper (Updated January, 2020)

8

https://developer.android.com/training/articles/keystore
https://developer.android.com/about/versions/pie/android-9.0#hardware-security-module
https://developer.android.com/training/articles/security-key-attestation
https://source.android.com/security/keystore/features.html
https://developer.android.com/training/articles/security-key-attestation

empowers a server to gain assurance about the prope�ies of keys. Devices that suppo�
Google Play are provisioned at the factory with an a�estation key generated by Google. The
secure hardware on such devices can sign statements with the provisioned key, which a�ests
to prope�ies of keys protected by the secure hardware, such as the fact that the key was
generated and can’t leave the secure hardware. Key A�estation be�er secures the location of
impo�ant prope�ies about the device, such as the OS version, patch level, and whether it
passed Veri�ed Boot.

Learn more about verifying hardware-backed keys with Key A�estation .

KeyChain

The KeyChain class provides access to private keys and their corresponding ce�i�cate chains
in credential storage. KeyChain is o�en used by Chrome, Vi�ual Private Networks (VPNs), and
enterprise apps to access keys impo�ed by the user or by the mobile device management
app.

Whereas the KeyStore is for non-shareable app-speci�c keys, KeyChain is for keys that are
meant to be shared within the pro�le. For example, a mobile device management agent can
impo� a key that Chrome will use for an enterprise website.

Android 10 introduces several improvements to the KeyChain API . When an app calls
KeyChain.choosePrivateKeyAlias , devices now �lter the list of ce�i�cates a user can choose
from based on the issuers and key algorithms speci�ed in the call. KeyChain no longer requires
a device to have a screen lock before keys or ce�i�cate authority (CA) ce�i�cates can be
impo�ed.

Jetpack Security

Developers can leverage the Android KeyStore with Jetpack Security . MasterKeys allows
developers to create a safe AES 256 GCM key out of the box or for advanced use cases that
specify se�ings to control key authorization. Jetpack Security also provides higher level crypto
abstractions for encrypting �les (EncryptedFile) and SharedPreferences
(EncryptedSharedPreferences) . It is recommended that Jetpack Security be used by all Device
Policy Controllers (DPCs), which control local device policies and system applications on
devices, enterprise apps, public apps, and private apps.

Key decryption on unlocked devices

Android 9.0 introduced the unlockedDeviceRequired �ag. This option determines whether the
Keystore requires the screen to be unlocked before allowing usage of the speci�ed key. These
types of keys are well suited for encrypting sensitive data to store on disk, such as health or
enterprise data. The �ag provides users a higher assurance that the data cannot be decrypted
while the device is locked should their phone be lost or stolen.

Android Enterprise Security White Paper (Updated January, 2020)

9

https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/reference/android/security/KeyChain
https://developer.android.com/reference/android/security/KeyChain.html
https://developer.android.com/reference/android/security/KeyChain#choosePrivateKeyAlias(android.app.Activity,%20android.security.KeyChainAliasCallback,%20java.lang.String%5B%5D,%20java.security.Principal%5B%5D,%20java.lang.String,%20int,%20java.lang.String)
https://source.android.com/security/overview/app-security#certificate-authorities
https://developer.android.com/jetpack/androidx/releases/security
https://developer.android.com/reference/androidx/security/crypto/MasterKeys
https://developer.android.com/reference/androidx/security/crypto/MasterKeys.html#AES256_GCM_SPEC
https://developer.android.com/reference/androidx/security/crypto/EncryptedFile
https://developer.android.com/reference/androidx/security/crypto/EncryptedSharedPreferences
https://developers.google.com/android/work/dev-options#2.-custom-dpc-and-google-play-emm-api
https://developers.google.com/android/work/dev-options#2.-custom-dpc-and-google-play-emm-api
https://developer.android.com/reference/android/security/keystore/KeyProtection.Builder#setUnlockedDeviceRequired(boolean)

Version Binding

In Keymaster 2 and 3 , all keys are also bound to the operating system and patch level of the
system image. This ensures that an a�acker who discovers a weakness in an old version of
system or TEE so�ware cannot roll a device back to the vulnerable version and use keys
created with the newer version. In addition, when a key with a given version and patch level is
used on a device that has been upgraded to a newer version or patch level, the key is
upgraded before it can be used, and the previous version of the key invalidated. In this way, as
the device is upgraded, the keys will "ratchet" forward along with the device, but any reversion
of the device to a previous release will cause the keys to be unusable.

Tamper-resistant hardware suppo�

As of Android 8.0, compatible devices can optionally use tamper-resistant hardware to verify
the lock screen passcode. If veri�cation succeeds, the tamper-resistant hardware returns a
high entropy secret that can be used to derive the disk encryption key.

Figure 2. Security hardware provides numerous protections on the device.

Biometrics

In Android 9.0 and above, the BiometricPrompt API system provides biometric authentication
dialogs to be used on behalf of an application. This creates a consistent look, feel, and
placement for the dialog, and gives users a greater con�dence they’re authenticating with
biometrics using a trusted credential tracker.

This API is used in conjunction with the Android Keystore system. Protecting biometric data is
accomplished through a hardware security module in the form of Strongbox Keymaster , which
securely stores and handles cryptographic keys on a device.

Devices can use biometric authentication to safeguard private information and essential
corporate data accessible through devices used in an enterprise se�ing. The BiometricPrompt
API is accessible to developers for integrating biometric authentication into their apps.

Android Enterprise Security White Paper (Updated January, 2020)

10

https://source.android.com/security/keystore
https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt
https://developer.android.com/about/versions/pie/android-9.0

The Android framework includes face and �ngerprint biometric authentication. Android can be
customized to suppo� other forms of biometric authentication, as well, such as Iris. All
biometric implementations must meet security speci�cations and have a strong rating in order
to pa�icipate in the BiometricPrompt class .

Biometric-based unlock modalities are typically evaluated on the basis of a False Accept Rate
(FAR). Android uses two additional metrics to help device manufacturers evaluate their
security: the Imposter Accept Rate (IAR) and Spoof Accept Rate (SAR).

Additionally, Android device manufacturers can access recommendations of system security
best practices for using biometric authentication. Biometric sensors are classi�ed based on
their spoof and imposter acceptance rates and on the security of the biometric pipeline. Test
methodology is available to assist in measuring the implementation of these unlock methods.

Fingerprint authentication

On devices with a �ngerprint sensor, users can enroll one or more �ngerprints and use those
�ngerprints to unlock the device and pe�orm other tasks. Android uses the Fingerprint
Hardware Inte�ace De�nition Language (HIDL) to connect to a vendor-speci�c library and
�ngerprint hardware, such as a �ngerprint sensor.

Android suppo�s Gatekeeper for �ngerprint and PIN/pa�ern/password authentication. The
Gatekeeper subsystem pe�orms this authentication in a Trusted Execution Environment,
enrolling and verifying passwords via an Hash-Based Message Authentication Code (HMAC)
with a hardware-backed secret key.

The Android Compatibility De�nition Document speci�es the implementation requirements for
biometric security.

Face authentication

Face authentication allows users to unlock their device simply by looking at the front of their
device. Android 10 adds suppo� for a new face authentication stack that can securely process
camera frames, preserving security and privacy during face authentication on suppo�ed
hardware. Android 10 also provides a method for security compliant implementations to
enable application integration for transactions, such as online banking or other services.

Additional authentication methods

Android suppo�s the Trust Agent framework to unlock the device. Google Sma� Lock uses
that framework to allow a device to remain unlocked as long as it stays with the user, as
determined by ce�ain user presence or other signals.

Android Enterprise Security White Paper (Updated January, 2020)

11

https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt.html
https://source.android.com/security/biometric/measure#metrics
https://source.android.com/security/best-practices/system
https://source.android.com/security/best-practices/system
https://source.android.com/compatibility/android-cdd#7_3_10_biometric_sensors
https://source.android.com/security/biometric/measure#test-methods
https://source.android.com/security/biometric/measure#test-methods
https://source.android.com/security/authentication/gatekeeper.html
https://source.android.com/compatibility/android-cdd.html#7_3_10_biometric_sensors
https://source.android.com/security/biometric/face-authentication
https://support.google.com/android/answer/9075927?visit_id=637117140080482470-4193372917&rd=1

However, Sma� Lock does not meet the same level of assurance as other unlock methods on
Android and is not allowed to unlock auth-bound KeyStore keys. Organizations can disable
Trust Agents using the KEYGUARD_DISABLE_TRUST_AGENTS �ag in the EMM policies.

Protected Con�rmation

Android Protected Con�rmation leverages a hardware protected user inte�ace (Trusted UI) to
pe�orm critical transactions outside the operating system in devices that run Android 9.0 or
above. This protects operations from fraudulent apps or a compromised operating system.
When an app invokes Protected Con�rmation, control is passed to the Trusted UI, where
transaction data is displayed and user con�rmation of the data’s correctness obtained.

Once con�rmed, the intention is cryptographically authenticated and tamper-proof when
conveyed to the relying pa�y. In total, the transaction has higher protection and security
relative to other forms of secondary authentication.

Several use cases exist for Android Protected Con�rmation, such as person to person money
transfers, user authentication, or other innovations such as con�rming correct insulin pump
injections.

Operating System Security
Android leverages multi-layered defenses to help keep the operating system secure. With
each version of Android, the operating system is fu�her hardened to have the right defenses
for the ongoing threats that enterprises face.

Device integrity

Device integrity features protect the mobile device from running a tampered and/or
compromised operating system. Android adopts several measures to guarantee device
integrity, including sandboxing, SELinux, Seccomp, Unix permissions, and a Hardware
Abstraction Layer.

Sandboxing

Android runs all apps inside sandboxes to prevent malicious or buggy app code from
compromising other apps or system components. Because the application sandbox is
enforced in the kernel, it encompasses the entire app regardless of the speci�c development
environment, APIs, or programming language used. By default, apps can't interact with each
other and have limited access to the operating system.

Similarly, system components run in least-privileged sandboxes in order to prevent
compromises in one component from a�ecting others. For example, remotely reachable

Android Enterprise Security White Paper (Updated January, 2020)

12

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_TRUST_AGENTS
https://developer.android.com/training/articles/security-android-protected-confirmation

components, like the media server and WebView, are isolated in their own restricted sandbox.

SELinux

Android uses Security-Enhanced Linux (SELinux) to enforce mandatory access control (MAC)
over all processes, including those with root/superuser privileges. SELinux enables Android to
be�er protect and con�ne system services, control access to app data and system logs,
reduce the e�ects of malicious so�ware, and helps protect users from potential �aws in code
on mobile devices.

SELinux operates on the principle of default denial: Anything not explicitly allowed is denied.
Android includes SELinux and a corresponding security policy for components in AOSP.
Disallowed actions are prevented and all a�empted violations are logged via Linux tools:
dmesg prints the message bu�er of the kernel, and logcat , is a command-line tool that dumps
a log of system messages.

With the Android system architecture , SELinux is used to enforce a separation between the
Android framework and the device-speci�c vendor components such that they run in di�erent
processes and communicate with each other via a set of allowed vendor inte�aces
implemented as Hardware Abstraction Layers (HALs).

Seccomp �lter

In conjunction with SELinux, Android uses Seccomp to fu�her restrict access to the kernel by
blocking access to ce�ain system calls. As of Android 7.0, Seccomp was applied to processes
in the media frameworks. As of Android 8.0, a Seccomp �lter is applied to all apps, enforcing a
whitelist of system calls which are allowed. Apps may optionally provide their own seccomp
�lter to fu�her reduce the set of allowed system calls.

Unix permissions

Android uses Linux/Unix permissions to fu�her isolate application resources. Android assigns a
unique user ID (UID) to each application and runs each user in a separate process. By default,
apps cannot access each other’s �les or resources just as di�erent users on Linux are isolated
from each other.

Anti-exploitation

Android o�ers exploit protection such as Control Flow Integrity and Integer Ove�low
Sanitization . New compiler-based mitigations have been added to make bugs harder to exploit
and prevent ce�ain classes of bugs from becoming vulnerabilities. This expands existing
compiler mitigations, which direct the runtime operations to safely abo� the processes when
unde�ned behavior occurs.

Android Enterprise Security White Paper (Updated January, 2020)

13

https://source.android.com/security/selinux
https://developer.android.com/studio/command-line/logcat
https://source.android.com/devices/architecture
https://source.android.com/devices/architecture/hal-types/
https://source.android.com/devices/architecture/kernel/config#Seccomp-BPF-TSYNC
https://android-developers.googleblog.com/2019/05/queue-hardening-enhancements.html
https://source.android.com/devices/tech/debug/cfi
https://source.android.com/devices/tech/debug/intsan
https://source.android.com/devices/tech/debug/intsan

User and Data Privacy

Protecting user privacy is fundamental to Android.

In Android 9.0, privacy highlights included limiting background apps' access to device sensors,
restricting information retrieved from Wi-Fi scans, and new permission rules and permission
groups related to phone calls, phone state, and Wi-Fi scans. These changes a�ect all apps
running on Android 9, regardless of target SDK version.

Android 10 extends the privacy and controls that users have over data and app capabilities. In
total, they provide users and IT administrators with be�er clarity about how data and user
location can be accessed.

The work pro�le creates a separate, self-contained pro�le on Android devices that isolates
corporate data from personal apps and data. This can be added to personal devices in a BYOD
se�ing or on a company-owned device used for both work and personal purposes.

With this separate pro�le, the user’s personal apps and data are outside IT control.

To provide clear visibility to the user, when a work pro�le is applied to a device the DPC
presents the terms of use and details the data that is captured and recorded. The user must
review and accept the user license agreement to set up the work pro�le.

Users can view work pro�le se�ings via Se�ings > Accounts.

Developers are encouraged to ensure their apps are compliant with the latest privacy changes .
Android 10 places restrictions on accessing data and system identi�ers, accessing camera and
networking information, and makes several changes to the permissions model.

Restricting access to device identi�ers

Devices that run Android 8.0 and above use random MAC addresses when probing new
networks, while not currently associated to a network. On Android 9.0, the device can use a
randomized MAC address when connecting to a Wi-Fi network if enabled by a developer
option. In Android 10, the system transmits randomized MAC addresses by default.
Additionally, device IMEI and serial numbers are unable to be accessed.

Location control

Apps can provide relevant information to the user using location APIs. For example, if an app
helps the user navigate a delivery route, it needs to continually access the device location to
provide the right assistance. Location is useful in many scenarios — Android provides tools for

Android Enterprise Security White Paper (Updated January, 2020)

14

https://source.android.com/security/enhancements/enhancements10#privacy
https://developer.android.com/work/managed-profiles
https://developers.google.com/android/work/terminology#fully_managed_device_with_a_work_profile
https://developer.android.com/preview/privacy/checklist
https://developer.android.com/training/location

developers to request the necessary permissions while granting users choice in what they
allow.

Apps that use location services must request location permissions so the user has visibility and
control over this access. In Android 10, users see a dialog to notify them that an app wishes to
access their location. This request can be for access only while using the app or all the time.

The user can choose to allow an app all-the-time access to device location. When an app
accesses device location in the background for the �rst time a�er the user makes this choice,
the system schedules a noti�cation to send to the user. This noti�cation reminds the user that
they've allowed the app to access device location all the time.

Learn more about location updates .

External storage access

To give users more control over their �les and to limit �le clu�er, apps targeting Android 10 and
higher are given scoped access into an external storage device, or scoped storage, by default.
Such apps can see only their app-speci�c directory—accessed using
Context.getExternalFilesDir() —and speci�c types of media. Developers are encouraged to use
scoped storage as a best practice.

EMM administrators are able to prevent their organization's users from accessing external
storage, such as an SD card, connected to their device to fu�her mitigate the potential for any
data loss.

Limited access to background sensors

Android 9.0 limits the ability for background apps to access user input and sensor data. If an
app is running in the background on a device running Android 9.0 and above, the system
applies the following restrictions to the app:

● Application cannot access the microphone or camera.
● Sensors that use the continuous repo�ing mode, such as accelerometers and

gyroscopes, don't receive events.
● Sensors that use the on-change or one-shot repo�ing modes don't receive events.

If an app needs to detect sensor events on devices running Android 9.0, it must use a
foreground service .

Lockdown mode

A user can enable a lockdown option to fu�her restrict access to the device. This mode
displays a power bu�on option that turns o� Sma� Lock, biometric unlocking, and
noti�cations on the lock screen. It can be enabled via Se�ings > Lock screen preferences >

Android Enterprise Security White Paper (Updated January, 2020)

15

https://developer.android.com/training/location/receive-location-updates#permissions
https://developer.android.com/training/data-storage/files/external-scoped
https://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)
https://source.android.com/devices/sensors/report-modes#continuous
https://source.android.com/devices/sensors/report-modes#on-change
https://source.android.com/devices/sensors/report-modes#one-shot
https://developer.android.com/guide/components/services.html#Foreground

Lockdown mode. Enterprise administrators can remotely lock the work pro�le and evict the
encryption key from memory on enterprise devices by leveraging this capability .

Network security
In addition to data-at-rest security—protecting information stored on the device—Android
provides network security for data-in-transit to protect data sent to and from Android devices.
Android provides secure communications over the Internet for web browsing, email, instant
messaging, and other Internet apps, by suppo�ing Transpo� Layer Security (TLS) .

DNS over TLS

Android 9.0 and above includes built-in suppo� for DNS over TLS. Users or administrators can
enable a Private DNS mode in the Network and internet se�ings. Android 10 fu�her extends
the capabilities for administrators to prevent users from changing DNS se�ings, thus
preventing DNS query leakage.

Figure 3. The Private DNS feature in the se�ings is enabled by default, with an option to input a private DNS provider hostname.

Devices automatically upgrade to DNS over TLS if the con�gured DNS server suppo�s it, but
users can turn it o� if they wish.

TLS by default

Android helps keep data safe by protecting network tra�c that enters or leaves a device with
Transpo� Layer Security (TLS) .

On Android 9.0 and above, the defaults for Network Security Con�guration block all clea�ext

Android Enterprise Security White Paper (Updated January, 2020)

16

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#FLAG_EVICT_CREDENTIAL_ENCRYPTION_KEY
https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/articles/security-config.html

(unencrypted HTTP) tra�c. Developers must explicitly opt-in to speci�c domains to use
clea�ext tra�c in their applications. Android Studio also warns developers when their app
includes a potentially insecure Network Security Con�guration.

To prevent accidental unencrypted connections, the android:usesClea�extTra�c manifest
a�ribute enables apps to indicate that they do not intend to send network tra�c without
encryption.

Android 10 uses TLS 1.3 by default for all TLS connections. TLS 1.3 is a major revision to the TLS
standard with pe�ormance bene�ts and enhanced security. TLS v1.3 is also more private as it
encrypts more of the handshake process and o�ers stronger security by no longer suppo�ing
ce�i�cates signed with SHA 1. Benchmarks indicate secure connections can be established as
much as 40 percent faster with TLS 1.3 compared to TLS 1.2.

Learn more about TLS 1.3 implementation .

Wi-Fi

Android 10 suppo�s the Wi-Fi Alliance's Wi-Fi Protected Access version 3 (WPA3) and Wi-Fi
Enhanced Open standards. WPA3 and Wi-Fi Enhanced Open improve overall Wi-Fi security,
providing be�er privacy and robustness against known a�acks.

WPA3 is a new WFA security standard for personal and enterprise networks, taking advantage
of modern security algorithms and stronger cipher suites.

WPA3 has two pa�s: personal and enterprise. WPA3-Enterprise o�ers stronger authentication
and link-layer encryption methods, and an optional 192-bit security mode for sensitive security
environments. WPA3-Personal uses simultaneous authentication of equals (SAE) instead of
pre-shared key (PSK), providing users with stronger security protections against a�acks such
as o�ine dictionary a�acks, key recovery, and message forging.

Wi-Fi Enhanced Open is a new WFA security standard for public networks based on
oppo�unistic wireless encryption (OWE). It provides encryption and privacy on open,
non-password-protected networks in areas such as cafes, hotels, restaurants, and libraries.
Enhanced Open doesn't provide authentication.

Android also suppo�s the WPA2-Enterprise (802.11i) protocol, also designed for enterprise
networks and can be integrated into a broad range of Remote Authentication Dial-In User
Service (RADIUS) authentication servers. The WPA2-Enterprise protocol suppo� uses
AES-128-CCM authenticated encryption.

In Android 10, QR codes and NFC data used for device provisioning can contain Extensible
Authentication Protocol (EAP) con�g and credentials—including ce�i�cates. When a person

Android Enterprise Security White Paper (Updated January, 2020)

17

https://developer.android.com/guide/topics/manifest/application-element
https://developer.android.com/about/versions/10/behavior-changes-all#tls-1.3
https://developer.android.com/about/versions/10/behavior-changes-all#tls-1.3
https://source.android.com/devices/tech/connect/wifi-wpa3-owe

scans a QR code or taps an NFC tag, the device automatically authenticates to a local Wi-Fi
network using EAP and sta�s the provisioning process without any additional manual input.

Learn more about EAP WI-Fi provisioning .

VPN

Android suppo�s securely connecting to an enterprise network using VPN:
● Always-on VPN —The VPN can be con�gured so that apps don’t have access to the

network until a VPN connection is established, which prevents apps from sending data
across other networks.

○ In Android 7.0 and above, Always-on VPN suppo�s VPN clients that implement
VpnService . The system automatically sta�s the VPN a�er the device boots.
Always-on VPN can be enabled for apps in enterprise use cases through
DevicePolicyManager#setAlwaysOnVpnPackage . Device owners and pro�le
owners can require work apps to always connect through a speci�ed VPN.
Additionally, users can manually set Always-on VPN clients that implement
VpnService methods using Se�ings>More>VPN . The option to enable
Always-on VPN from se�ings is available only if the VPN client targets API level
24 or higher.

● Per User VPN —On multi-user devices, VPNs are applied per Android user, so all
network tra�c is routed through a VPN without a�ecting other users on the device.
VPNs are applied per work pro�le, which allows an IT administrator to specify that only
their enterprise network tra�c goes through the enterprise-work pro�le VPN—not the
user’s personal network tra�c.

● Per Application VPN —Android 5.0 introduced suppo� to facilitate VPN connections
on allowed apps and to prevent VPN connections on disallowed apps.

In Android 10, VPN apps can set an HTTP proxy for their VPN connection. A VPN app must
con�gure a ProxyInfo instance with a host and po�, before calling
VpnService.Builder.setH�pProxy() . The system and many networking libraries use this proxy
se�ing but the system doesn't force apps to proxy HTTP requests.

VPN service modes

VPN apps can also now discover if the service is running because of always-on VPN and if
lockdown mode is active. New methods added in Android 10 can help developers adjust the
user inte�ace. For example, developers may disable the disconnect bu�on in the VPN
application when always-on VPN controls the lifecycle of the service.

VPN Lockdown modes

Lockdown modes allow administrators to block network tra�c that does not use the VPN and
exempt an app that allows it to use any available network if the VPN is down or unreachable.

Android Enterprise Security White Paper (Updated January, 2020)

18

https://developer.android.com/work/versions/android-10#eap_wi-fi_provisioning
https://developer.android.com/reference/android/net/VpnService.html#SERVICE_META_DATA_SUPPORTS_ALWAYS_ON
https://developer.android.com/reference/android/net/VpnService.html
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAlwaysOnVpnPackage(android.content.ComponentName,%20java.lang.String,%20boolean)
https://developer.android.com/reference/android/net/ProxyInfo
https://developer.android.com/reference/android/net/VpnService.Builder.html#setHttpProxy(android.net.ProxyInfo)
https://developer.android.com/guide/topics/connectivity/vpn#always-on

Administrators can also explicitly deny access to all networks for an app and this only allows
communication to take place over the VPN.

Third-pa�y apps

Google is commi�ed to increasing the use of TLS in all apps and services. As apps become
more complex and connect to more devices, it’s easier for apps to introduce networking
mistakes by not using TLS correctly.

As of December 2019, 80% of Android apps are encrypting tra�c by default . The percentage is
even greater for apps targeting Android 9 and higher, with 90% of them encrypting tra�c by
default.

Android 7.0 and above suppo�s Network security con�guration , which lets apps easily
customize their network security se�ings in a safe, declarative con�guration �le without
modifying app code. These se�ings can be con�gured for speci�c domains, such as opting
out of clea�ext tra�c . This helps prevent an app from accidentally regressing due to changes
in URLs made by external sources, such as backend servers.

This safe-by-default se�ing reduces the application a�ack su�ace while bringing consistency
to the handling of network and �le based application data.

Ce�i�cate handling

As of Android 7.0, all new devices must ship with the same ce�i�cate authority (CA) store.

Ce�i�cate authorities are a vital component of the public key infrastructure used in
establishing secure communication sessions via TLS. Establishing which CAs are
trustwo�hy—and by extension, which digital ce�i�cates signed by a given CA are
trustwo�hy—is critical for secure communications over a network.

These protections are fu�her improved through preventing apps that target Android 9.0 from
allowing unencrypted connections by default. This follows a variety of changes made over the
years to be�er protect Android users.

With Android 7.0 and above, compatible devices trust only the standardized system CAs
maintained in AOSP. Apps can also choose to trust user- or admin- added CAs. Trust can be
speci�ed across the whole app or only for connections to ce�ain domains.

When device-speci�c CAs are required, such as a carrier app needing to securely access
components of the carrier’s infrastructure (e.g. SMS/MMS gateways), these apps can include
the private CAs in the components/apps themselves. For more details, see Network Security
Con�guration .

Android Enterprise Security White Paper (Updated January, 2020)

19

https://security.googleblog.com/2019/12/an-update-on-android-tls-adoption.html
https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config.html#CleartextTrafficPermitted
https://source.android.com/security/overview/app-security#certificate-authorities
https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config

Application security
Apps are an integral pa� of any mobile pla�orm, and users increasingly rely on mobile apps for
core productivity and communication tasks. Android provides multiple layers of application
protection, enabling users to download apps for work or personal use to their devices with the
peace of mind that they’re ge�ing a high level of protection from malware, security exploits,
and a�acks.

Application signing

Android requires that all apps be digitally signed with a developer key prior to installation. APK
key rotation , suppo�ed in Android 9.0, gives apps the ability to change their signing key as pa�
of an APK update. To suppo� key rotation, the APK signature scheme has been updated from
v2 to v3 to allow old and new keys to be used.

Android uses the corresponding ce�i�cate to identify the application's author. When the
system installs an update to an application, it compares the ce�i�cate in the new version with
the one in the existing version, and allows the update if the ce�i�cate matches.

Android allows apps signed with the same key to run in the same process, if the apps so
request, so that the system treats them as a single application. Android provides
signature-based permissions enforcement, so that an application can expose functionality to
another app that’s signed with the same key. By signing multiple apps with the same key, and
using signature-based permissions, an app can share code and data in a secure manner.

App permissions

Permissions protect the privacy of Android users and provide transparency about what
resources or information apps wish to access. For apps to access system features, such as
camera and the web, or user data, such as contacts and SMS, an Android app must explicitly
request permission. These permission prompts are designed so the user has clear visibility into
the request and the oppo�unity to approve or deny it.

A central design point of the Android security architecture is that no app, by default, has
permission to pe�orm any operations that would adversely impact other apps, the operating
system, or the user. This includes reading or writing the user's private data (such as contacts or
emails), reading or writing another app's �les, pe�orming network access, keeping the device
awake, and others.

Apps that target API level 23 (Android 6.0) and above use runtime permissions . These dialogs
request the user grant access to the speci�ed permission . This approach streamlines the app
install and update process, since the user does not need to grant permissions when they install

Android Enterprise Security White Paper (Updated January, 2020)

20

https://developer.android.com/about/versions/pie/android-9.0#apk-key-rotation
https://developer.android.com/about/versions/pie/android-9.0#apk-key-rotation
https://source.android.com/security/apksigning/v3
https://developer.android.com/guide/topics/permissions/overview?hl=en
https://developer.android.com/guide/topics/permissions/overview?hl=en#runtime_requests_android_60_and_higher

or update the app. It also gives the user more control over the app's functionality; for example,
a user could choose to give a camera app access to the camera but not to the device location.
Users can revoke permissions at any time, even if the app targets a lower API level.

Android 8.0 and above also includes improvements to give users be�er control over the use of
identi�ers. Privacy-sensitive persistent device identi�ers are either no longer accessible or
gated behind a runtime permission. For example, APIs that access the Wi-Fi MAC address have
been removed except on fully managed devices.

On enterprise devices, device management apps (DPCs) can deny permissions on behalf of
the user using the setPermissionPolicy API, a feature of managed Google Play.

Google Play Protect

Google Play Protect is a powe�ul threat detection service that actively monitors a device to
protect it, its data, and apps from malware. The always-on service is built into all devices that
have Google Play, protecting more than 2.5 billion devices.

The Google Play Protect Verify Apps service scans devices once everyday for harmful
behavior or security risks. If it detects an app containing malware, it noti�es the user. Google
Play Protect may also remove or disable malicious apps automatically as pa� of its prevention
initiative and use the information it gathers to improve the detection of Potentially Harmful
Applications (PHAs). In addition, the user can opt to have unknown apps sent to Google for
analysis.

Google Play app review

The Play Store has policies in place to protect users from malicious actors trying to distribute
PHAs.

Developers are validated in two stages. They are �rst reviewed when they create their
developer account based on their pro�le and credit cards. Developers are then reviewed
fu�her with additional signals upon app submission.

Before applications become available in Google Play they undergo an application review
process to con�rm they comply with Google Play policies . Google has developed an
automated application risk analyzer that pe�orms static and dynamic analysis of APKs to
detect potentially harmful app behavior. When Google’s application risk analyzer discovers
something suspicious, it �ags the o�ending app, and refers it to a security analyst for manual
review. Google suspends developer accounts that violate developer program policies .

Android Enterprise Security White Paper (Updated January, 2020)

21

https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html?m=1
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPermissionPolicy(android.content.ComponentName,%20int)
https://developers.google.com/android/play-protect/
https://developers.google.com/android/play-protect/potentially-harmful-applications
https://developers.google.com/android/play-protect/potentially-harmful-applications
https://play.google.com/intl/us/about/developer-content-policy/#!#showlanguages
http://www.android.com/us/developer-content-policy.html#showlanguages

A developer is noti�ed immediately if their app is �agged for a security issue. They receive
details about how to improve the app and links to suppo� page details for additional guidance.
This noti�cation usually includes a timeline for delivering the improvement. In some cases,
security improvements to apps must be made before a developer can publish any fu�her
updates.

Another key element in minimizing risk is the use of updated APIs. Encouraging developers to
use the most recent APIs encourages suppo� for the most updated features, creating optimal
security and pe�ormance. Both new apps and app updates must target at least Android 9.0, or
API level 28, to meet API requirements .

Every new Android version introduces changes that bring signi�cant security and pe�ormance
improvements – and enhance the user experience of Android overall. Some of these changes
only apply to apps that explicitly declare suppo� through their targetSdkVersion manifest
a�ribute, also known as the target API level. Reference the Google Play Developers
documentation for more details on updating to the proper target API level requirement.

SafetyNet

SafetyNet is a set of services and APIs that developers may use to protect apps against
security threats. They can mitigate against device tampering, bad URLs, PHAs, and fake users.

The SafetyNet A�estation API is an anti-abuse API that allows app developers to assess the
Android device their app is running on. This API provides a cryptographically-signed
a�estation, assessing the device's integrity. In order to create the a�estation, the API examines
the device's so�ware and hardware environment, looking for integrity issues, and comparing it
with the reference data for approved Android devices. The generated a�estation is bound to
the nonce that the caller app provides. The a�estation also contains a generation timestamp
and metadata about the requesting app.

The SafetyNet Safe Browsing API o�ers services to determine if a URL has been marked as a
known threat by Google. SafetyNet implements a client for the Safe Browsing Network
Protocol v4 , developed by Google. Both the client code and the v4 network protocol were
designed to preserve users' privacy and keep ba�ery and bandwidth consumption to a
minimum. Developers can use this API to take full advantage of Google's Safe Browsing service
on Android in the most resource-optimized way, and without implementing its network
protocol.

The SafetyNet service also includes the SafetyNet reCAPTCHA API , which protects apps from
malicious tra�c. This API uses an advanced risk analysis engine to protect apps from spam and
other abusive actions. If the service suspects that the user interacting with the app might be a

Android Enterprise Security White Paper (Updated January, 2020)

22

https://developer.android.com/distribute/best-practices/develop/target-sdk
https://developer.android.com/distribute/best-practices/develop/target-sdk
https://developer.android.com/training/safetynet
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation#obtain-nonce
https://developer.android.com/training/safetynet/safebrowsing
https://developers.google.com/safe-browsing/v4
https://developers.google.com/safe-browsing/v4
https://developer.android.com/training/safetynet/recaptcha

bot instead of a human, it serves a CAPTCHA that a human must solve before the app can
continue executing.

The SafetyNet Verify Apps API allows an app to interact programmatically with Google Play
Protect, to check whether there are known potentially harmful apps installed. If an app handles
sensitive user data, such as �nancial information, developers should con�rm that the current
device is protected against malicious apps and is free of apps that may impersonate it or
pe�orm other malicious actions. If the security of the device doesn't meet the minimum
security posture, developers can disable functionality within the app to reduce the danger to
the user.

Data protection
Android uses industry-leading security features to protect user data. The pla�orm provides
developer tools and services to aid in securing the con�dentiality, integrity, and availability of
user data.

Encryption

Encryption protects user data if an Android device is lost, and is mandatory on all devices
suppo�ing Android 6.0 and higher. Android suppo�s two methods for device encryption:
�le-based encryption (FBE) and legacy full-disk encryption .

File-Based Encryption

File-based encryption enables storage areas to be encrypted with di�erent keys and has been
available for use on devices since Android 7.0. New devices running Android 10 out of the box
are now required to use �le-based encryption as the default.

With FBE, the device boots directly to the normal lock screen, and the device is fully usable
almost immediately when unlocked. Devices using FBE o�er two kinds of storage locations to
apps:

● Device Encrypted (DE) storage is available once the device boots, before the user
unlocks the device. This storage is protected by a hardware secret and so�ware
running in the Trusted Execution Environment that checks that Veri�ed Boot is
successful before decrypting data.

● Credential Encrypted (CE) storage is available only a�er the user has unlocked the
device. In addition to the protections on DE storage, CE storage keys can only be
derived a�er unlocking the device, with protection against brute force a�acks in
hardware.

Most apps store all data in CE storage and run only a�er credentials are entered, but apps such
as alarm clocks or accessibility services such as Talkback can take advantage of the Direct

Android Enterprise Security White Paper (Updated January, 2020)

23

https://www.google.com/recaptcha/intro/v3.html
https://developer.android.com/training/safetynet/verify-apps.html
https://source.android.com/security/encryption/file-based
https://source.android.com/security/encryption/full-disk
https://source.android.com/security/encryption/file-based
https://developer.android.com/training/articles/direct-boot.html

Boot APIs and run before credentials are entered, using DE storage while CE is unavailable.

On devices with more than one user, each user has their own encryption keys, with CE keys
bound to that user; this improves on FDE, which has only a single key bound to the �rst user,
which unlocks all user data on the device. Encryption keys are 256 bits long and generated
randomly on-device.

Devices running Android 9.0 and higher can use adoptable storage and FBE. An additional layer
of encryption protects information, such as directory layouts, �le sizes, permissions and
creation/modi�cation times (collectively this is known as �le system metadata).

Android 9.0 also introduced suppo� for metadata encryption of the main user data pa�ition
where hardware suppo� is present, using a single key protected by Keymaster and Veri�ed
Boot.

Full-Disk Encryption

Devices running Android 5.0 to 9.0 may use full-disk encryption instead of �le-based
encryption. Full-disk encryption encodes all user data on an Android device using a single
encryption key. As with �le-based encryption, all user-created data is automatically encrypted
before commi�ing it to disk and all reads automatically decrypt data before returning it to the
calling process.

Android full-disk encryption is based on dm-crypt, which is a kernel feature that works at the
block device layer. The encryption algorithm is AES-128 with cipher-block chaining (CBC) and
ESSIV:SHA256. The master key is encrypted with AES-128 via calls to the BoringSSL library .
Some devices may use AES-256.

Upon �rst boot, the device creates a randomly generated 128-bit master key and then hashes
it with a default password and stored salt. This hash is then passed through a keyed function
based on RSA in the Trusted Execution Environment, to prevent o�ine password guessing.
When the user updates their passcode, the hash is regenerated without regenerating the
master key.

Backup encryption

Devices that run Android 9.0 and above can now suppo� enhanced backup encryption , a new
capability whereby the backed-up application data on a device can only be decrypted by a key
that is randomly generated on that same device.

Then, the randomly generated decryption key is securely shared with a custom-built security
chip known as Titan , which is located at a Google datacenter, together with a hash of the user's
lockscreen PIN, pa�ern, or password. None of this data shared with the Titan chip is known to

Android Enterprise Security White Paper (Updated January, 2020)

24

https://developer.android.com/training/articles/direct-boot.html
https://source.android.com/security/encryption/metadata
https://opensource.google.com/projects/boringssl
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext

Google, and the device veri�es the identity of the Titan chip by checking its root of trust
before sharing the data with the chip.

With this Titan chip, there is a limited number of incorrect a�empts strictly enforced by the
custom �rmware, which cannot be updated without erasing the contents of the chip. By
design, this means that no one (including Google) can access a user's backed-up application
data without speci�cally knowing their passcode.

Android security updates

Monthly device updates are an impo�ant tool to keep Android users safe. Every month,
Google publishes Android Security Bulletins to update users, pa�ners, and customers on the
latest �xes. These security updates are available for Android versions for three years from the
date of release.

Android 8.0 re-architected the Android OS framework adding a feature called project Treble ,
which accelerates the delivery of security �xes, privacy enhancements, and consistency
improvements. Launched with Android 8.0 in 2017, it has enabled OEMs and silicon vendors to
develop and deploy Android updates faster than what was previously possible. All devices that
launch with Android 9.0 and later are Treble-compliant and take full advantage of the Treble
architecture.

Administrators of fully managed devices can install system updates via a system update �le in
Android 10 devices. With manual system updates, IT administrators can:

● Test an update on a small number of devices before installing them widely
● Avoid duplicate downloads on bandwidth-limited networks.
● Stagger installations, or update devices only when they’re not being used.

OEM pa�er updates
Security-critical �xes are pushed to all Pixel devices monthly directly from Google’s
over-the-air servers. Pixel �rmware images are also available on the Google Developer site for
manual update and �ashing. Many OEM pa�ners follow a similar cadence in their security
updates. Many OEMs also publish their security bulletins:

● Google
● Nokia
● Samsung
● LG
● Motorola

Users can �nd out whether they’re running a recently patched device with the Security Patch
Level, a value indicating the security patch level of a build. It’s available through the a�estation
ce�i�cate chain, which contains a root ce�i�cate that is signed with the Google a�estation

Android Enterprise Security White Paper (Updated January, 2020)

25

https://source.android.com/security/bulletin/index.html
https://source.android.com/devices/architecture#hidl
https://developers.google.com/android/images
https://source.android.com/security/bulletin/pixel/
https://www.nokia.com/en_int/phones/security-updates
https://security.samsungmobile.com/securityUpdate.smsb
https://lgsecurity.lge.com/security_updates_mobile.html
https://motorola-global-portal.custhelp.com/app/software-upgrade-news/g_id/1949

root key. It is also visible in the device se�ings. EMM pa�ners have the capability to call an API
to detect which security update is installed and impose compliance rules for outdated devices.

Google Play System Updates

In Android 10, Google Play System Updates o�er a simpler and faster method to deliver
updates. Key Android system components are modularized, and end-user devices receive the
components from the Google Play Store or through a pa�ner-provided over-the-air (OTA)
mechanism.

The components are delivered as either APK or APEX �les — APEX is a new �le format which
loads earlier in the booting process. Impo�ant security and pe�ormance improvements that
previously needed to be pa� of full OS updates can be downloaded and installed similarly to
an app update. Updates delivered from Google Play System Updates are secured by being
cryptographically signed.

Google Play System Updates can also deliver faster security �xes for critical security bugs by
modularizing media components, which accounted for nearly 40% of recently patched
vulnerabilities, and allowing updates to Conscrypt, the Java Security Provider.

Conscrypt

The Conscrypt module accelerates security improvements and improves device security
through regular updates via Google Play System Updates. It uses Java code and a native library
to provide the Android TLS implementation as well as a large po�ion of Android cryptographic
functionality such as key generators, ciphers, and message digests. Conscrypt is available as
an open source library , though it has some specializations when included in the Android
pla�orm.

The Conscrypt module uses BoringSSL , a native library that is a Google fork of OpenSSL and
which is used in many Google products for cryptography and TLS (most notably Google
Chrome). The version of BoringSSL that ships on Android 10 has gone through the National
Institute of Standards and Technology’s (NIST) Cryptographic Algorithm Validation Program
(CAVP).

Adiantum
Adiantum is an encryption method designed for devices running Android 9.0 and higher whose
CPUs lack AES instructions. This provides encryption to such devices with li�le pe�ormance
overhead and enables a class of lower-powered devices to use strong encryption. The Android
Compatibility De�nition Document (CDD) re�ects that all new Android devices be encrypted
using one of the allowed encryption algorithms.

Android Enterprise Security White Paper (Updated January, 2020)

26

https://source.android.com/devices/architecture/modular-system
https://source.android.com/devices/tech/ota/apex
https://source.android.com/devices/architecture/modular-system/conscrypt
https://github.com/google/conscrypt
https://boringssl.googlesource.com/boringssl/
https://www.nist.gov/
https://www.nist.gov/
https://csrc.nist.gov/Projects/cryptographic-algorithm-validation-program
https://source.android.com/security/encryption/adiantum
https://source.android.com/compatibility/cdd
https://source.android.com/compatibility/cdd

Device and pro�le management

Android Enterprise Device Use Cases

Android Enterprise o�ers APIs and other tools for developers to integrate suppo� for Android
into their enterprise mobility management (EMM) solutions.

Employee-owned devices : Personal devices can be set up with a work pro�le —a feature built
into Android 5.1 and above that allows work apps and data to be stored in a separate,
self-contained space within a device. An employee can continue to use their device as normal;
all their personal apps and data remain on the device's primary pro�le.

The employee's organization has full management control over a device's work pro�le, but has
no visibility or access to a device's personal pro�le. This distinct separation gives enterprises
control over corporate data and security without compromising employee privacy.

Company-owned devices for knowledge workers : Organizations can exercise full
management control over devices running Android 5.0 and above that they own and issue to
employees. There are two deployment options available for these types of company-owned
devices: fully managed (Android 5.0 and above) and fully managed with a work pro�le
(Android 8.0 and above).

● Fully managed deployments are for company-owned devices that are used exclusively
for work purposes. Organizations can enforce the full range of management policies on
the entire device, including device-level policies that are unavailable to work pro�les.

● Fully managed devices with work pro�les are for company-owned devices that are
used for both work and personal purposes. The organization still manages the entire
device. However, the separation of work data and apps into a work pro�le allows
organizations to enforce two separate sets of policies. For example:

● A stronger set of policies for the work pro�le that applies to all work apps and
data.

● A more lightweight set of policies for the personal pro�le that applies to the
user's personal apps and data.

Learn more about the capabilities available to device and pro�le owners , and about work
pro�les on fully managed devices .

Company owned devices for dedicated use : Dedicated devices are a subset of
company-owned devices that serve a speci�c purpose. Android comes with a broad set of
management features that allow organizations to con�gure devices for everything from

Android Enterprise Security White Paper (Updated January, 2020)

27

https://developers.google.com/android/work/overview#employee-owned-devices-byod
https://support.google.com/work/android/answer/6191949?hl=en
https://developers.google.com/android/work/overview#company-owned-devices-for-knowledge-workers
https://developers.google.com/android/work/device-management
https://developers.google.com/android/work/dpc/work-profile-on-managed-device
https://developers.google.com/android/work/overview#company-owned-devices-for-dedicated-use

employee-facing factory and industrial environments, to customer-facing signage and kiosk
purposes.

Dedicated devices are typically locked to a single app or set of apps. Android 6.0 and above
o�ers granular control over a device's lock screen, status bar, keyboard, and other key
features, to prevent users from enabling other apps or pe�orming other actions on dedicated
devices.

Integrating Android
EMM Console : EMM solutions typically take the form of an EMM console—a web application
that allows IT administrators to manage their organization, devices, and apps. To suppo� these
functions for Android, organizations integrate their console with the APIs and UI components
provided by Android Enterprise.

Device Policy Controller : All Android devices that an organization manages through an EMM
console must install a Device Policy Controller (DPC) app during setup. A DPC is an agent that
applies the management policies set in an EMM console to devices. On a device with a work
pro�le, the DPC controls the creation and policies of the work pro�le, or the pro�le owner
(PO). A device that is fully managed, or a device owner (DO) pro�le that is device wide, is also
controlled by a DPC.

The DPC runs in one of two main modes:

1. Device Owner: runs in the primary pro�le and has the ability to manage a device in
fully managed device mode. This is appropriate for company-owned devices.

2. Pro�le Owner: runs in and manages only the work pro�le.

For example, a typical personally enabled work device con�guration looks like this:

A typical BYOD con�guration would not have a DPC running in the personal pro�le and looks
like the following:

Android Enterprise Security White Paper (Updated January, 2020)

28

https://developers.google.com/android/work/overview#emm_console
https://developers.google.com/android/work/overview#dpc

When only work apps and data are present on the device, such as in a typical dedicated device
con�guration, then only the primary pro�le exists with a DPC running.

Android 10 introduces new features and APIs for fully managed devices — manual system
updates, extending QR code and NFC provisioning to include credentials for an EAP Wi-Fi
network, and suppo� for DNS over TLS.

OEMCon�g

OEMCon�g is an Android standard that enables device makers to create custom device
features for immediate and universal suppo� from EMMs. Instead of integrating enterprise
APIs from each OEM to suppo� their custom features such as control of barcode scanners or
enabling extra security features, EMMs can easily use an OEM-built application that con�gures
all of the unique capabilities of a device.

OEMCon�g takes advantage of managed con�gurations, enabling developers to provide
built-in suppo� for the con�guration of apps. For example, an app may have the option to only
sync data when a device is connected to Wi-Fi. With such abilities, IT administrators can
specify the managed con�guration and apply them to devices.

The managed con�gurations iframe is an embeddable UI that lets IT administrators save, edit,
and delete an app’s managed con�guration se�ings. Developers can, for example, display a
bu�on (or similar UI element) in an app's details or se�ings page that opens the iframe.

Android Enterprise Security White Paper (Updated January, 2020)

29

https://support.google.com/work/android/answer/9388447?hl=en
https://developers.google.com/android/management/managed-configurations-iframe

Within the iframe, an IT administrator can set con�gurations and save them as a con�guration
pro�le. Each time an IT administrator saves a new con�guration pro�le, the iframe returns a
unique identi�er called mcmID. This makes it possible for IT administrators to create multiple
pro�les for the same app.

Device policies

Those developing a DPC or apps for managed Google Play can refer to Android Developers
documentation for new APIs, features, and behavior changes.

Most capabilities available to the DPC are accessible via the DevicePolicyManager APIs and
user restrictions in UserManager .

They can prevent sharing of �les from the work pro�le or device, such as:

1. DISALLOW_BLUETOOTH_SHARING : disallows transferring �les via Bluetooth.
2. DISALLOW_USB_FILE_TRANSFER : disallows sending �les via USB.
3. DISALLOW_OUTGOING_BEAM : disallows beaming out data from apps using NFC.
4. DISALLOW_MOUNT_PHYSICAL_MEDIA : disallows mounting physical external media.

Device owner and pro�le owner mode also have a lot of control over other aspects of the
device or pro�le. Below are some of the available policies:

1. DISALLOW_DEBUGGING_FEATURES : disallows access to debugging capabilities.
2. DISALLOW_AUTOFILL : disallows auto�ll services.
3. Se�ing device passcode policy using APIs such as setPasswordQuality() .
4. Disabling less secure unlock methods using setKeyguardDisabledFeatures() .
5. Disabling the camera using setCameraDisabled() .
6. Se�ing permi�ed accessibility services using setPermi�edAccessibilityServices() .
7. Se�ing permi�ed input methods using setPermi�edInputMethods() .
8. Disabling screen capture using setScreenCaptureDisabled() .
9. Automatically accepting/denying some runtime permissions with setPermissionPolicy() .
10. If the device is lost, DPC can lock (lockNow()) or wipe (wipeData()) the device.
11. Disable backups using setBackupServiceEnabled() .
12. Disallow adding a personal account using DISALLOW_MODIFY_ACCOUNTS . This makes

it harder to copy corporate data to personal cloud accounts.
13. Require Google Play Protect to be enabled and enforce app veri�cation across all users

on the device using ENSURE_VERIFY_APPS .
14. Require only installing apps from known sources such as the Play store using

DISALLOW_INSTALL_UNKNOWN_SOURCES .
15. Install keys and ce�i�cates into the pro�le-wide KeyChain using installKeyPair() , and

control access to those keys. These can be used as machine ce�i�cates to identify the
device.

Android Enterprise Security White Paper (Updated January, 2020)

30

https://developer.android.com/work/versions#screen_lock_quality_check
https://developer.android.com/work/versions#screen_lock_quality_check
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
https://developer.android.com/reference/android/os/UserManager.html
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_BLUETOOTH_SHARING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_USB_FILE_TRANSFER
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_OUTGOING_BEAM
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_MOUNT_PHYSICAL_MEDIA
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_AUTOFILL
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setKeyguardDisabledFeatures(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setCameraDisabled(android.content.ComponentName,%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPermittedAccessibilityServices(android.content.ComponentName,%20java.util.List%3Cjava.lang.String%3E)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPermittedInputMethods(android.content.ComponentName,%20java.util.List%3Cjava.lang.String%3E)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setScreenCaptureDisabled(android.content.ComponentName,%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPermissionPolicy(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#lockNow(int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#wipeData(int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setBackupServiceEnabled(android.content.ComponentName,%20boolean)
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_MODIFY_ACCOUNTS
https://developer.android.com/reference/android/os/UserManager.html#ENSURE_VERIFY_APPS
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_INSTALL_UNKNOWN_SOURCES
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#installKeyPair(android.content.ComponentName,%20java.security.PrivateKey,%20java.security.cert.Certificate,%20java.lang.String)

16. Set always on VPN using setAlwaysOnVpnPackage() .

As a general guide, DO controls the primary pro�le and PO controls the work pro�le. However,
there are circumstances whereby PO can enable a global user restriction. Google provides an
open-source app, Test DPC, for testing enterprise functionality in the DPC app. Test DPC is
available from github or Google Play . The Test DPC may used to:

● Simulate features in Android
● Set and enforce policies
● Set app and intent restrictions
● Set up work pro�les
● Set up fully managed Android devices

Fully Managed Device provisioning

The lifetime of the DPC is always tied to the lifetime of the device or pro�le it manages. IT
managers, or the end user, must enroll a device into fully managed device mode, which
provisions the device policy client as a device owner. Provisioning must occur during the initial
setup of a new device, or a�er a factory reset. In the case of DO, it can only be provisioned
during initial device setup and only be removed by the DO itself.

A number of options exist to provision a device into fully managed device mode:

● Zero-touch enrollment - a�er creating a con�guration in the zero-touch po�al, the IT
administrator can ship a device directly to an end-user. Enrollment is automatic at �rst
boot, or a�er factory reset, and is enforced to prevent the user from breaking out of
the zero-touch enrollment process.

● NFC / QR code - An administrator provisioning large numbers of devices or an
employee se�ing up their own single device can pe�orm an NFC bump using a
programmed NFC tag or scan a QR code to install the necessary DPC and initiate the
enrollment process.

● G Suite or Cloud Identity account - With this provisioning method, the DPC guides the
user through the provisioning steps a�er the user adds their Google Account during
the initial device setup or via se�ings.

A device in fully managed mode can have a policy added that prevents a user from factory
rese�ing a device.

Work pro�le security
Work pro�le mode is initiated when the DPC initiates a managed provisioning �ow . The work
pro�le is based on the Android multi-user concept, where the work pro�le functions as a
separate Android user segregated from the primary pro�le. The work pro�le shares common
UI real estate with the primary pro�le. Apps, noti�cations, and widgets from the work pro�le
have a badge icon to distinguish them from the personal apps and noti�cations.

Android Enterprise Security White Paper (Updated January, 2020)

31

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAlwaysOnVpnPackage(android.content.ComponentName,%20java.lang.String,%20boolean)
http://github.com/googlesamples/android-testdpc/
https://play.google.com/store/apps/details?id=com.afwsamples.testdpc&hl=en
https://developers.google.com/android/work/prov-devices#device_owner_provisioning_methods
https://developers.google.com/android/work/requirements?api=playemm#1.5.-zero-touch-enrollment
https://developers.google.com/android/management/provision-device#using_qr_codes
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_PROFILE

With the work pro�le, enterprise data does not intermix with personal application data. The
work pro�le has its own apps, its own downloads folder, its own se�ings, and its own
KeyChain. It is encrypted using its own encryption key, and it can have its own passcode to
gate access.

The work pro�le is provisioned upon installation, and the user can only remove it by removing
the entire work pro�le. Administrators can also remotely instruct the device policy client to
remove the work pro�le, for instance, when a user leaves the organization or a device is lost.
Whether the user or an IT administrator removes the work pro�le, user data in the primary
pro�le remains on the device.

Android 10 introduces new provisioning and a�estation features for company-owned devices
that only require a work pro�le. During the provisioning of a company-owned device, a new
intent extra allows DPCs to initiate work pro�le or fully managed setup. A�er a work pro�le is
created or full management is established, DPCs must launch policy compliance screens to
enforce any initial policies.

A device with a work pro�le can be con�gured with factory reset protection so that if the
device is incorrectly reset, the organization has the ability to reset the factory reset protection,
which is a feature that prevents device the�.

Separate work challenge

Devices running Android 7.0 and above suppo� a separate work challenge to enhance security
and control. The work challenge is a separate passcode that protects work apps and data.
Administrators managing the work pro�le can choose to set the password policies for the
work challenge di�erently from the policies for other device passwords. Administrators
managing the work pro�le set the challenge policies using the usual DevicePolicyManager
methods, such as setPasswordQuality() and setPasswordMinimumLength() . These
administrators can also con�gure the primary device lock, by using the DevicePolicyManager
instance returned by the DevicePolicyManager.getParentPro�leInstance() method.

As pa� of se�ing up a separate work challenge, users may also elect to enroll �ngerprints to
unlock the work pro�le more conveniently. Fingerprints must be enrolled separately from the
primary pro�le as they are not shared across pro�les.

As with the primary pro�le, the work challenge is veri�ed within secure hardware, ensuring
that it’s di�cult to brute-force. The passcode, mixed in with a secret from the secure
hardware, is used to derive the disk encryption key for the work pro�le, which means that an
a�acker cannot derive the encryption key without either knowing the passcode or breaking
the secure hardware.

Android Enterprise Security White Paper (Updated January, 2020)

32

https://developers.google.com/android/work/prov-devices#profile_owner_provisioning_methods
https://developer.android.com/work/versions#work-profile_device-id_attestation
https://developers.google.com/android/work/security#enable_enterprise_factory_reset_protection
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordMinimumLength(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#getParentProfileInstance(android.content.ComponentName)

Cross pro�le data sharing

While data in the work pro�le is segregated by default from the user’s personal data, there are
instances where sharing is useful. Android allows sharing between pro�les in ways that can be
managed by the DPC. For example:

1. Disallow copy & paste between pro�les: DISALLOW_CROSS_PROFILE_COPY_PASTE
2. Allow the primary pro�le to handle web links from the work pro�le:

ALLOW_PARENT_PROFILE_APP_LINKING
3. Allow widgets from the work pro�le, such as a calendar widget, to be added on the

home screen: addCrossPro�leWidgetProvider()
4. Set whether work pro�le Caller ID is shown in primary pro�le:

setCrossPro�leCallerIdDisabled()
5. Set whether work pro�le contacts are shown in primary pro�le:

setCrossPro�leContactsSearchDisabled()
6. Set which apps can see noti�cations from the work pro�le:

setPermi�edCrossPro�leNoti�cationListeners()
7. Set whether apps in the primary pro�le using the ACTION_SEND intent may share into

the work pro�le using the DISALLOW_SHARE_INTO_MANAGED_PROFILE user
restriction available as of Android 9.0. Note that, to reduce the risk of data leakage, the
opposite direction is not allowed by default, though it can be enabled by the DPC.

IT administrators can also control cross pro�le intents using the addCrossPro�leIntentFilter and
clearCrossPro�leIntentFilters methods available in Android 5.0 and higher. By default, during
work pro�le creation the system automatically con�gures the following intents to be
forwarded to the primary pro�le:

● Telephony intents : as of Android 7.0, administrators can also whitelist a dialer for work,
which allows a "business" phone account to make and receive work calls instead of
forwarding telephony intents to the primary pro�le dialer. In this case, all calls from the
work dialer are inse�ed into the work call log.

● Home intent : to invoke the launcher in the primary pro�le since it doesn’t run in the
work pro�le.

● Get content : the user has the option to resolve in either the primary or work pro�le.
● Open document : the user has the option to resolve in either the primary or work

pro�le.
● Picture : the user has the option to resolve in either the primary or work pro�le if an app

that can handle camera exists in the work pro�le.
● Set clock : the user has the option to resolve in either the primary or work pro�le.
● S peech recognition : the user has the option to resolve in either the primary or work

pro�le.

Android Enterprise Security White Paper (Updated January, 2020)

33

https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CROSS_PROFILE_COPY_PASTE
https://developer.android.com/reference/android/os/UserManager.html#ALLOW_PARENT_PROFILE_APP_LINKING
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#addCrossProfileWidgetProvider(android.content.ComponentName,%20java.lang.String)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setCrossProfileCallerIdDisabled(android.content.ComponentName,%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setCrossProfileContactsSearchDisabled(android.content.ComponentName,%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPermittedCrossProfileNotificationListeners(android.content.ComponentName,%20java.util.List%3Cjava.lang.String%3E)
https://developer.android.com/reference/android/content/Intent.html#ACTION_SEND
https://developer.android.com/reference/android/os/UserManager#DISALLOW_SHARE_INTO_MANAGED_PROFILE
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#addCrossProfileIntentFilter(android.content.ComponentName,%20android.content.IntentFilter,%20int)
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#clearCrossProfileIntentFilters(android.content.ComponentName)

Application management
Android Enterprise provides IT administrators with powe�ul tools to deploy, con�gure and
manage applications on a variety of device form factors.

Enterprise Mobility Management apps

The EMM app, acting as a DPC, controls which work apps may be installed. On a fully managed
device, the EMM app can call the PackageInstaller APIs directly to silently install, uninstall, and
update apps. It can also listen for broadcasts such as ACTION_PACKAGE_ADDED ,
ACTION_PACKAGE_REMOVED , and ACTION_PACKAGE_REPLACED to be noti�ed of changes
to installed apps.

On devices that ship with Google Play, an EMM can delegate app management to Google Play.
Through managed Google Play, an enterprise version of Google Play, IT administrators can
easily �nd, deploy, and manage work apps while ensuring that malware and other threats are
neutralized.

Managed Google Play

Managed Google Play provides APIs to EMM vendors that allow them to manage apps on
Android devices. Organizations can build a customized and secure mobile application
storefront for their teams, featuring public and private applications, which can be delivered to
devices directly from the managed Google Play store. This eliminates the need to sideload any
applications to devices.

Installation of apps in either the work pro�le or on fully managed devices is possible via direct
user request in the managed Google Play Store app (pull), or as a result of a call to the EMM
API (push). The APIs provide functionality for use (indirectly) by EMM-managed enterprise
administrators as follows:

● An IT administrator can remotely install or remove apps on managed Android devices.
This action is limited to devices or pro�les that are under management by the EMM.

● An IT administrator can de�ne which users see which apps. A user running the Play
Store app within the work pro�le only sees apps whitelisted for them. The user can
install these apps, but not others.

● Enterprise administrators can see which users have apps installed or provisioned, and
the number of licenses purchased and provisioned.

Managed Google Play also provides additional app management options for IT administrators.
With the managed Google Play iFrame , administrators can approve apps in the managed
Google Play store directly from the EMM console. By using managed con�gurations,

Android Enterprise Security White Paper (Updated January, 2020)

34

https://developer.android.com/reference/android/content/pm/PackageInstaller.html
https://developer.android.com/reference/android/content/Intent.html#ACTION_PACKAGE_ADDED
https://developer.android.com/reference/android/content/Intent.html#ACTION_PACKAGE_REMOVED
https://developer.android.com/reference/android/content/Intent.html#ACTION_PACKAGE_REPLACED
https://developers.google.com/android/work/play/emm-api/v1/installs/patch
https://developers.google.com/android/work/play/emm-api/v1/installs/patch
https://developers.google.com/android/work/play/emm-api/managed-play-iframe

administrators can whitelist speci�c apps for employee use, and selectively approve only the
permissions they want their apps to use.

Additionally, administrators can enforce update preferences through managed Google Play.
While the recommendation is for users to leave auto updates enabled, administrators can push
an urgent update out to devices automatically.

Private apps

With managed Google Play, an enterprise customer can publish apps and target them privately
(i.e., they’re only visible and installable by users within that enterprise). Private apps are
logically separated in Google’s cloud infrastructure from Google Play for consumers. There are
two modes of delivery for private apps:

● Google hosted: By default, Google hosts the APK in its secure, global data centers.
● Externally-hosted: Enterprise customers host APKs on their own servers, accessible

only on their intranet or via VPN. Details of the requesting user and their authorization is
provided via a JSON Web Token (JWT) with an expiry time. The JWT is signed by
Google using the key pair associated with the speci�c app in Play, and should be
veri�ed before trusting the authorization contained in the JWT.

In both cases, Google Play stores the app metadata—title, description, graphics, and
screenshots. In all cases, apps must comply with all Google Play policies.

Managed con�gurations

Managed con�gurations allow an organization’s IT administrator to remotely specify se�ings
for apps. This capability is useful for organization-approved apps that are deployed to a work
pro�le. Managed con�gurations allow an IT administrator to remotely control the availability of
features, con�gure se�ings, or set in-app credentials, via the Google Play EMM API . As an
example, an app may have an option to only sync data when a device is connected to Wi-Fi, or
whitelist or blacklist speci�c URLs in the web browser. Managed con�guration options can be
changed by the developer and updated in Google Play where the EMM will pickup on the
changes for new and existing app deployments.

Google Chrome is an example of an enterprise-managed app that implements policies and
con�gurations that can be fully managed according to enterprise policies and restrictions.

Applications from unknown sources

Administrators may need to prevent the installation of applications from outside Google Play,
or apps from unknown sources. Devices and data can be at increased risk when such apps are
installed from unveri�ed sources.

Android Enterprise Security White Paper (Updated January, 2020)

35

http://jwt.io/
https://developer.android.com/work/managed-configurations
https://developers.google.com/android/work/play/emm-api/
http://www.chromium.org/administrators/policy-list-3
http://www.chromium.org/administrators/policy-list-3

To prevent the installation of apps from unknown sources, administrators of fully managed
devices and work pro�les can add the DISALLOW_INSTALL_UNKNOWN_SOURCES user
restriction.

When the administrator of a work pro�le adds DISALLOW_INSTALL_UNKNOWN_SOURCES , the
restriction only applies to the work pro�le. However, the administrator of a work pro�le can
place a device-wide restriction by se�ing a managed con�guration for Google Play.

Programs
A number of Google-backed initiatives and collaborations, help advance the Android
ecosystem and suppo� pa�ners and customers in their use of Android in enterprise se�ings.

Android Enterprise Recommended

The Android Enterprise Recommended program sets an elevated standard for enterprise
devices and services. Validated devices in the program meet a set of speci�cations for
hardware, deployment, security updates, and user experience. Security updates are delivered
to devices within 90 days of release from Google. In addition, OEMs receive an enhanced level
of technical suppo� and training. Organizations may select devices from the curated list with
con�dence that they meet a common set of criteria required for inclusion in the Android
Enterprise Recommended program.

Additional key requirements include:

● Knowledge worker devices run Android 8.0 or above
● Rugged devices run Android 7.0 or above
● Suppo� for bulk deployment methods
● Delivery of Android security updates within 90 days of release from Google (30 days

recommended)
Learn more about the program’s device requirements .

Android Security Rewards Program

The Android Security Rewards (ASR) program incentivizes researchers to �nd and repo�
security issues, providing key assistance to Android security e�o�s. This program covers
security vulnerabilities discovered in the latest available Android versions for Pixel phones and
tablets.

Google Play Security Rewards

The Google Play Security Reward Program is available for researchers to repo� any
vulnerabilities discovered in apps hosted on Google Play. All Google’s apps are included in the
program, and developers of popular Android apps are invited to opt-in.

Android Enterprise Security White Paper (Updated January, 2020)

36

https://developer.android.com/reference/android/os/UserManager#DISALLOW_INSTALL_UNKNOWN_SOURCES
https://developer.android.com/reference/android/os/UserManager#DISALLOW_INSTALL_UNKNOWN_SOURCES
https://developer.android.com/work/managed-configurations
https://www.android.com/enterprise/recommended/
https://androidenterprisepartners.withgoogle.com/glossary/device/
https://www.google.com/about/appsecurity/android-rewards/
https://www.google.com/about/appsecurity/play-rewards/

App Security Improvement Program
The App Security Improvement Program is a service that helps Google Play developers
improve the security of their apps. The program provides tips and recommendations for
building more secure apps and identi�es potential security issues and mitigations when apps
are uploaded to Google Play.

App Defense Alliance

The App Defense Alliance is a collaboration between Google and ESET, Lookout, and
Zimperium. It was created to fu�her enhance the safety of the Google Play Store by working
with pa�ners to quickly �nd PHAs and take action to protect users.

Integrating Google Play Protect detection systems with each pa�ner’s scanning engines
generates new app risk intelligence as apps are being queued to publish. Pa�ners will analyze
that dataset and act as another set of eyes prior to an app going live on the Play Store.

Industry Standards and Ce�i�cations
Android has received numerous security ce�i�cations which demonstrate our strong
commitment to the highest security standards.

SOC ce�i�cation

Android Enterprise has received ISO 27001 ce�i�cation and SOC 2 and 3 repo�s for
information security practices and procedures for Android Management API, zero-touch
enrollment and managed Google Play. This designation ensures these services meet strict
industry standards for security and privacy.

Granted by the International Organization for Standardization, ISO 27001 outlines the
requirements for an information security management system. It speci�es best practices and
details a list of security controls regarding information risk management.

The SOC 2 and 3 repo�s are based on American Institute of Ce�i�ed Public Accountants
(AICPA) Trust Services principles and criteria. To earn this, auditors assess an organization’s
information systems relevant to security, availability, processing integrity and con�dentiality or
privacy.

An independent assessor pe�ormed a thorough audit to ensure compatibility with the
established principles. The entire methodology of documentation and procedures for data
management are reviewed during such audits, and must be made available for regular
compliance review.

Android Enterprise Security White Paper (Updated January, 2020)

37

https://developer.android.com/google/play/asi
https://developers.google.com/android/play-protect/app-defense-alliance

Learn more about these security designations .

Government Grade Security

FIPS 140-2 CAVP

Federal Information Processing Standards (FIPS) are standards and guidelines for Federal
computer systems that are developed by the National Institute of Standards and Technology
(NIST) in accordance with the Federal Information Security Management Act (FISMA) and
approved by the Secretary of Commerce. Although FIPS are developed for use by the federal
government, many in the private sector voluntarily use these standards as well. The National
Institute of Standards and Technology’s (NIST) Cryptographic Algorithm Validation Program
(CAVP) provides validation testing of approved cryptographic algorithms and their individual
components.

Common Criteria/NIAP Mobile Device Fundamentals Protection Pro�le

Common Criteria is a driving force for the widest available mutual recognition of security
products with 31 pa�icipating countries. The National Information Assurance Pa�nership
(NIAP) serves as the U.S. representative to the Common Criteria Recognition Arrangement
(CCRA). The U.S. government uses the NIAP to ce�ify devices for o�cial use. Google Pixel 3
and Pixel 3 XL have achieved this strict ce�i�cation. This ce�i�cation process has enabled the
Android team to build some of the requirements to achieve this ce�i�cation directly into the
Android Open Source Project, which enables OEMs the ability to a�ain ce�i�cation in much
less time.

DISA Security Technical Implementation Guide (STIG)

The Security Technical Implementation Guides (STIGs) are the con�guration standards for
Depa�ment of Defense Information Assurance (IA) and IA-enabled devices/systems. The
STIGs contain technical guidance to “lock down” information systems/so�ware that might
otherwise be vulnerable to a malicious computer a�ack. The Google Pixel Android 10 STIG
provides a standard implementation for con�guring and locking down any Android device
using Android Enterprise management controls.

Conclusion
The open source development approach of Android is a key pa� of its security. Developers,
device manufacturers, security researchers, SoC vendors, academics, and the wider Android
community create a collective intelligence that locates and mitigates vulnerabilities for the
entire ecosystem.

Android Enterprise Security White Paper (Updated January, 2020)

38

https://www.blog.google/products/android-enterprise/android-enterprise-iso-certification/
https://csrc.nist.gov/Projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/Projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/Projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/Projects/cryptographic-algorithm-validation-program
https://www.commoncriteriaportal.org/
https://www.niap-ccevs.org/
https://www.niap-ccevs.org/
https://www.niap-ccevs.org/Product/Compliant.cfm?PID=10941
https://www.niap-ccevs.org/Product/Compliant.cfm?PID=10941
https://dl.dod.cyber.mil/wp-content/uploads/stigs/zip/U_Google_Android_10-x_V1R1_STIG.zip

With Android, multiple layers of security suppo� the diverse use cases of an open pla�orm
while also enabling su�cient safeguards to protect user and corporate data. Additionally,
Android pla�orm security keeps devices, data, and apps safe through tools like app
sandboxing, exploit mitigation and device encryption. A broad range of management APIs
gives IT depa�ments the tools to help prevent data leakage and enforce compliance in a
variety of scenarios. The work pro�le enables enterprises to create a separate, secure pro�le
on users’ devices where apps and critical company data are kept secure and separate from
personal information.

Google Play Protect, the world’s most widely deployed mobile threat protection service,
delivers built-in protection on every device. Powered by Google machine learning, it works to
catch and block harmful apps and scan the device to root out any PHAs or malware. Google
Safe Browsing in Chrome protects enterprise users as they navigate the web by warning of
potentially harmful sites.

Enterprises rely on sma� devices for critical business operations, collaboration, and accessing
proprietary data and information. Google continues to invest in resources to fu�her
strengthen the security of the Android pla�orm, and we look forward to fu�her contributions
from the community and seeing how organizations will use Android to drive business success.

Android Enterprise Security White Paper (Updated January, 2020)

39

